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Abstract. We study symmetric powers of classes of symmetric bilinear forms in the
Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic
properties and compute their classical invariants. We relate these to earlier results on
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1. Introduction

Throughout this paper, K will be a field of characteristic different from 2.

Given a finite-dimensional K-vector space V and a non-negative integer k, denote by∧kV the k-fold exterior power of V , and by SkV the k-fold symmetric power of V . It
is well-known that the ring of isomorphism classes of finite-dimensional K-vector spaces
under direct sum and tensor product is a λ-ring, with the exterior powers acting as the λ-
operations (associated to elementary symmetric polynomials) and the symmetric powers
being the “dual” s-operations (associated to complete homogeneous polynomials). The
exterior and symmetric powers are in fact functors on the category of finite-dimensional
K-vector spaces and K-linear maps, special cases of the Schur functors which arise in
representation theory (see, for example, [2] or [3]). A natural question to ask is whether
we may define such “Schur powers” of symmetric bilinear and quadratic forms as well.

Let ϕ be a symmetric bilinear form on an n-dimensional vector space V over K. Bourbaki
(see [1, Ch. 9, eqn. (37)]) defined on

∧kV the k-fold exterior power
∧kϕ of ϕ by:

∧kϕ(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det(ϕ(vi, wj)) for all v1, . . . , vk, w1, . . . , wk ∈ V

for 1 ≤ k ≤ n;
∧kϕ := the zero form for k > n; and

∧0ϕ := 〈1〉.
∧kϕ is again a

bilinear form and is symmetric if ϕ is symmetric. Serre remarked on exterior powers
(for integral forms) in [14]. In [11] we established the basic facts about exterior powers
of a symmetric bilinear form, including formulas for their classical invariants. There we
obtained a diagonalisation for the k-fold exterior power of the form ϕ = 〈a1, . . . , an〉 as

∧kϕ = ⊥
1≤i1<···<ik≤n

〈ai1 · · · aik〉,

which is just the kth elementary symmetric polynomial in the n one-dimensional sum-
mands 〈a1〉, . . . , 〈an〉 of ϕ. We also saw that the k-fold exterior power

∧k is well-defined
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on elements of the Witt-Grothendieck ring Ŵ (K) but not on the Witt ring W (K). Fur-

ther, we showed that Ŵ (K) is a λ-ring with the exterior powers as the λ-operations, and
hence derived annihilating polynomials in W (K).

Given a symmetric bilinear form ϕ of dimension n, there are two approaches to extending
the concept of k-fold exterior power of ϕ, giving two classes of definition:

(A) those based on the Bourbaki determinant approach;
(B) those based on evaluating other symmetric polynomials at the one-dimensional forms

〈a1〉, . . . , 〈an〉.

The first class has the advantage of being computable for any given symmetric bilinear

form, (not necessarily diagonal) before passing to Ŵ (K). Also, it is coordinate-free in
a way that the second class is not. It may even be defined over rings where we do not
have a Diagonalisation theorem. The main disadvantages of this class of definition are

that it does not work in Ŵ (K) in characteristic different from zero, and in any case is

not consistent with the λ-ring structure on Ŵ (K) (that is, it does not satisfy a certain
identity which symmetric powers in a λ-ring must satisfy — see Remark 3.8).

The second class has the advantages of being independent of field characteristic and

consistent with the λ-ring structure on Ŵ (K). However, it requires the form to be a
sum of degree-one elements, i. e. a diagonalised form, and so is dependent on choice of
coordinates, and less intrinsic.

In characteristic other than 2, we may use the one-one correspondence between quadratic
forms and symmetric bilinear forms to define corresponding powers for quadratic forms.

In this article we give these definitions for the symmetric powers and examine their classi-
cal invariants and their relation to the exterior powers. This material formed part of the
author’s Ph. D. thesis [9]. In a later paper [10], we will explore the different ways (both
classes (A) and (B)) in which, for any partition π of a positive integer k, we may define
a “Schur power” of a form ϕ.

2. Notation and background

For x ∈ R, dxe will denote the greatest integer less than or equal to x. We will denote by
Sk the symmetric group on k symbols. All vector spaces will be finite-dimensional.

For the meaning of such terms as bilinear and quadratic forms, isometry, the Witt-
Grothendieck ring, etc., see, for example, [13]. For the definitions of k-fold exterior power
and symmetric power of a finite-dimensional vector space see, for example, [3] or [2]. For
λ-ring terminology, see [6].

Unless otherwise stated, by “form” we will mean “symmetric bilinear form”. Juxtaposition
will denote—according to context—a product of forms ϕψ = ϕ ⊗ ψ = ϕ · ψ, or a scalar
multiple of a form: if ϕ = 〈a1, . . . , an〉, then λϕ = 〈λa1, . . . , λan〉. We will use a cross to
denote an integer times a form: n×ϕ means the orthogonal sum of ϕ with itself n times.

We recall the following well-known result, similar to that for exterior powers:
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Proposition 2.1. Let V and W be vector spaces over K and let k be a positive integer.
Then

Sk(V ⊕W ) =
⊕

i+j=k

SiV ⊗ SjW.

Definition 2.2. The permanent of a k × k matrix A = (aij) with entries in a commu-
tative ring is

per(A) =
∑

σ∈Sk

a1σ(1) · · · akσ(k).

Remark 2.3. The permanent is a generalised matrix function — like the determinant,
except that the trivial character of Sk, rather than the sign character, is used to weight
the summands. It shares some properties of the determinant — e. g. multiplying a row
or column of the matrix by a scalar multiplies the permanent by that scalar — but is not
multiplicative. For more details, see [12, Chapter 7].

The next two easily-proven results give properties of the permanent which are useful for
us. By the direct sum of two square matrices A and B, we will mean the square matrix

A⊕B :=

(
A O
O B

)
, where O stands for the appropriately sized zero matrices.

Lemma 2.4. Let A and B be square matrices, possibly of different sizes. Then

per(A⊕B) = (perA)(perB).

Lemma 2.5. The permanent of the k × k matrix




a a · · · a
a a · · · a
...

...
. . .

...
a a · · · a


 is k!ak.

3. Factorial symmetric powers of symmetric bilinear forms

We first look at the class (A) definition of k-fold symmetric power of a bilinear form. This
definition appears in [5] (at least for k = 2).

Definition 3.1. Let V be a vector space of dimension n overK. Let ϕ : V ×V −→ K be a
bilinear form, and let k be a positive integer. We define the k-fold factorial symmetric

power of ϕ,

Skϕ : SkV × SkV −→ K

by

Skϕ(x1 · · · xk, y1 · · · yk) = per
(
ϕ(xi, yj)

)
1≤i,j≤k

,

where · is the multiplication in the symmetric algebra of V . We define S0ϕ to be 〈1〉, the
identity form of dimension 1. Clearly S1ϕ = ϕ.

Skϕ is easily seen to be a bilinear form and is symmetric if ϕ is symmetric. If q is the
quadratic form associated to ϕ, we write Skq for the quadratic form associated to Skϕ.

Remark 3.2. A diagonalisation and the determinant of this form may then be found in a
similar manner to those of the exterior powers as done in [11]; we will see, however, that
they involve the field elements 2!, 3!, etc, hence the term “factorial symmetric power”.
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Lemma 3.3. Let {v1, . . . , vn} be a set of pairwise orthogonal vectors with respect to a
symmetric bilinear form ϕ, and let (u1, . . . , uk) and (w1, . . . , wk) be two ordered k-tuples
with ui, wj ∈ {v1, . . . , vn} for each i, j ∈ {1, . . . , k}. Suppose that for some r ∈ {1, . . . , n}
the number of ui which are equal to vr differs from the number of wj which are equal to
vr. Then for each σ ∈ Sk, there exists i ∈ {1, . . . , k} such that ϕ(ui, wσ(i)) = 0.

Proof. Without loss of generality, suppose that ui1 = · · · = uis = vr, uis+1
6= vr, . . . ,

uik 6= vr and that wj1 = · · · = wjs = wjs+1
= vr. Let σ ∈ Sk.

If i ∈ {i1, . . . , is} and σ(i) /∈ {j1, . . . , js+1}, we are done, since in this case ϕ(ui, wσ(i)) = 0.

So suppose that for each i ∈ {i1, . . . , is} we have σ(i) ∈ {j1, . . . , js+1}. Then by injectivity
of the permutation σ, we may choose m such that

σ−1(jm) /∈ {i1, . . . , is}.

Setting i = σ−1(jm), we have ui 6= vr and wσ(i) = wjm = vr, so ϕ(ui, wσ(i)) = 0 as
required.

Remark 3.4. Consider the symmetric power Skϕ defined by

Skϕ(u1 · · · uk, w1 · · ·wk) = per(ϕ(ui, wj)).

Lemma 3.3 says that if we choose the ui, wj from the pairwise orthogonal set {v1, . . . , vn},
and for some r the number of ui which are equal to vr differs from the number of wj which
are equal to vr, we will have

Skϕ(u1 · · · uk, w1 · · ·wk) = 0.

For,

per(ϕ(ui, wj)) =
∑

σ∈Sk

ϕ(u1, wσ(1)) · · ·ϕ(uk, wσ(k))

and in each summand in the sum over Sk, at least one of the multiplicands will be 0 by
the last lemma.

Proposition 3.5. Let V be a vector space of dimension n over K and let ϕ = 〈a1, . . . , an〉
be a diagonalisation of a symmetric bilinear form on V . Let k be a positive integer. Then
Skϕ is a symmetric bilinear form of dimension

(
n+k−1

k

)
and has a diagonalisation of the

form

Skϕ = ⊥
1≤i1<···<il≤n
ki1

+···+kil
=k

〈ki1 !a
ki1

i1
· · · kil !a

kil

il
〉.

Proof. Let {v1, . . . , vn} be an orthogonal basis for V , with ϕ(vi, vi) = ai and ϕ(vi, vj) = 0
for i, j ∈ {1, . . . , n}, i 6= j. Let k be a positive integer. Since a basis for SkV is

{vi1 · · · vik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n} = {v
ki1

i1
· · · v

kil

il
: ki1 + · · ·+ kil = k}

we have immediately that the form Skϕ has dimension
(
n+k−1

k

)
.

Without loss of generality, we may restrict attention to basis elements of SkV , by bilin-

earity of Skϕ. Let v
ki1

i1
· · · v

kil

il
and v

pj1

j1
· · · v

pjm

jm
be two basis elements of SkV , and consider

Skϕ(v
ki1

i1
· · · v

kil

il
, v

pj1

j1
· · · v

pjm

jm
).
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If v
ki1

i1
· · · v

kil

il
and v

pj1

j1
· · · v

pjm

jm
are not the same element of SkV , then by Remark 3.4 the

permanent Skϕ(v
ki1

i1
· · · v

kil

il
, v

pj1

j1
· · · v

pjm

jm
) will be 0.

Thus it suffices to consider Skϕ(v
ki1

i1
· · · v

kil

il
, v

ki1

i1
· · · v

kil

il
). By orthogonality of {v1, . . . , vn}

we get that the matrix (ϕ(vir , vjs)) is a direct sum of matrices,

(ϕ(vir , vjs)) =




ai1 · · · ai1
...

. . .
...

ai1 · · · ai1


⊕




ai2 · · · ai2
...

. . .
...

ai2 · · · ai2


⊕ · · · ⊕




ail · · · ail
...

. . .
...

ail · · · ail




Then by Lemmata 2.4 and 2.5, per(ϕ(vir , vjs)) = ki1 !a
ki1

i1
· · · kil !a

kil

il
. Hence Skϕ is repre-

sented by a diagonal matrix of size
(
n+k−1

k

)
×
(
n+k−1

k

)
, with entries as claimed.

Remark 3.6. Observe that if ϕ = 〈a1, . . . , an〉 and charK ≤ k, then the first term 〈k!ak1〉 in
the diagonalisation of Skϕ will be 0. Thus detSkϕ will be 0 and so Skϕ will be singular
regardless of whether or not ϕ is singular. This is why we are effectively restricted to
characteristic 0 when considering factorial symmetric powers.

From [11, Proposition 4.1], a diagonalisation of the k-fold exterior power
∧kϕ of a sym-

metric bilinear form ϕ = 〈a1, . . . , an〉 is
∧kϕ =⊥1≤i1<···<ik≤n

〈ai1 · · · aik〉. By choosing

each of the kij = 1 in the orthogonal sum in the statement of Proposition 3.5, we pick out

the summands of the type 〈ai1 · · · aik〉. Thus
∧kϕ is a subform of Skϕ.

Many of the remarks in [11, §4] about
∧kϕ hold for Skϕ also. If ϕ is a hyperbolic form over

a formally real field then Skϕ may or may not be hyperbolic, since (by [11, Remark 4.2])

its subform
∧kϕ may or may not be hyperbolic: if

∧kϕ has an anisotropic part, so has
Skϕ. Also, for example, S3〈a, b〉 = 〈3a3, 3b3, 2a2b, 2b2a〉 by Proposition 3.5, and so for the
hyperbolic form 〈1,−1〉 we have S3〈1,−1〉 = 〈3,−3,−2, 2〉, which is hyperbolic.

Non-isometric forms may have isometric k-fold symmetric powers. For example, let ϕ =
〈1, 2, 3〉, ψ = 〈1, 6, 3〉 over a field K in which 3 is not a square, so by comparison of
determinants ϕ and ψ are not isometric. Now

∧2ϕ = 〈2, 3, 6〉 ' 〈6, 3, 2〉 =
∧2ψ, and so

S2ϕ =
∧2ϕ ⊥ 〈2 · 12, 2 · 22, 2 · 32〉 '

∧2ψ ⊥ 〈2 · 12, 2 · 62, 2 · 32〉 = S2ψ.

If ϕ is an isotropic form then Skϕ will also be isotropic, since its subform
∧kϕ is isotropic,

as seen in [11, Remark 4.3].

The same argument as in [11, Remark 4.4] shows that if ϕ is an anisotropic form then

Skϕ need not be anisotropic: since Skϕ has dimension greater than that of
∧kϕ, the

dimension of Skϕ will exceed the u-invariant whenever the dimension of
∧kϕ does.

Remark 3.7. Provided we are in characteristic 0, Skϕ is well-defined on isometry classes

and on elements of the Witt-Grothendieck ring Ŵ (K). This is a special case of a result
in [10] based on work in [4], but we sketch a proof for Sk now.

Let V = VK be the category of finite-dimensional K-vector spaces, let C = CK be the
category of finite-dimensional K-bilinear spaces, and let D = DK be the category whose
objects and morphisms are as follows. An object is a pair (V, γ) where V is a finite-
dimensional K-vector space and γ is a vector space homomorphism γ : V −→ V ∗. A
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morphism in HomD((V, γ), (W, δ)) is a vector space homomorphism f : V −→ W such
that f ∗ ◦ δ ◦ f = γ. Then one easily shows that as categories, C ∼= D via the functor
ϕÃ ϕ̂ where ϕ̂ : V −→ V ∗ is the adjoint of ϕ. Next, one has that ϕ is symmetric if and
only if the linear map (ϕ̂)∗ : (V ∗)∗ = V −→ V ∗ is equal to ϕ̂.

Now call a functor F : V Ã V a ∗-functor if there is a (natural) map of functors
h : F ◦∗ −→ ∗◦F . Call (F , h) a symmetric ∗-functor if for every V , h satisfies h(V ∗) =
h(V )∗ : F((V ∗)∗) = F(V ) −→ F(V ∗)∗. One shows that: a ∗-functor (F , h) induces a
functor (V, ϕ)Ã (Fh(V ),Fh(ϕ)) on C in a canonical way; if h(W ) is an isomorphism for
all W and (V, ϕ) is non-degenerate, then (Fh(V ),Fh(ϕ)) is non-degenerate; and if (F , h)
is a symmetric ∗-functor and (V, ϕ) is symmetric, then (Fh(V ),Fh(ϕ)) is symmetric. To
conclude, one shows that the maps

hSk(V ) = h(V ) : Sk(V ∗) −→ Sk(V )∗

determined by

h(V )(γ1 · · · γk)(v1 · · · vk) =
∑

σ∈Sk

γσ(1)(v1) · · · γσ(k)(vk)

make Sk into a symmetric ∗-functor and that hSk(V ) is an isomorphism for all finite-
dimensional vector spaces V , provided K has characteristic 0. The functor induced by Sk

on C is then Sk and Sk is well-defined on elements of Ŵ (K).

Remark 3.8. The definition of factorial symmetric powers is not consistent with the λ-ring
structure on the Witt-Grothendieck ring, for the following reason. In order for operations
sj in a λ-ring to play the rôle of symmetric powers, they must satisfy the relation (see [6,
page 31])

∑

i+j=k

(−1)jλi(x)sj(x) = 0.

Straightforward computation shows that for the example of ϕ = 〈a, b, c〉, we get
∑

i+j=3

(−1)j
∧iϕSjϕ = 〈2a, 2b, 2c〉 − 〈6a, 6b, 6c〉

in the Witt-Grothendieck ring. This will be 0 if and only if 〈6a, 6b, 6c〉 and 〈2a, 2b, 2c〉 are
isometric. But det〈6a, 6b, 6c〉 = 6abc, while det〈2a, 2b, 2c〉 = 2abc, and these will not be
equal unless 3 is a square in K.

Invariants of factorial symmetric powers. We will work out the determinant and
(for k = 2) the Hasse invariant of Skϕ now, and the signature in Remark 4.15 later.

Proposition 3.9. Let ϕ be a symmetric bilinear form of dimension n. Then

det(Skϕ) = D · (detϕ)

(
n+k−1

n

)
where D =

∏

1≤i1<···<il≤n
ki1

+···+kil
=k

ki1 ! · · · kil !.

In particular, for k = 2,

det(S2ϕ) = 2n(detϕ)n+1.
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Proof. Write ϕ = 〈a1, . . . , an〉 in diagonal form, so detϕ = a1a2 · · · an. From the diago-
nalisation of Sk in Proposition 3.5, we have that its determinant is

det(Skϕ) =

( ∏

1≤i1<···<il≤n
ki1

+···+kil
=k

ki1 ! · · · kil !

)( ∏

1≤i1<···<il≤n
ki1

+···+kil
=k

a
ki1

i1
· · · a

kil

il

)
.

The second product is symmetric in a1, . . . , an, it consists of
(
n+k−1

k

)
terms (the dimension

of Skϕ), and each term is itself a product of k of the ai. So altogether we have

(n+ k − 1)! k

k! (n− 1)!
=

(n+ k − 1)!

(k − 1)! (n− 1)!

of the scalars ai, multiplied together. Since there are n of the ai, and each occurs equally
often, we have that each occurs

1

n

(n+ k − 1)!

(k − 1)! (n− 1)!
=
(n+ k − 1)!

(k − 1)! (n)!
=

(
n+ k − 1

n

)

times, giving

det(Skϕ) = D · (a1a2 · · · an)

(
n+k−1

n

)

= D · (detϕ)

(
n+k−1

n

)

where we write

D :=
∏

1≤i1<···<il≤n
ki1

+···+kil
=k

ki1 ! · · · kil !.

When k = 2, 2! occurs n times and 1! occurs
(
n
2

)
times, giving D = 2! · · · 2!1! · · · 1! = 2n

and D · (detϕ)

(
n+k−1

n

)
= D · (detϕ)

(
n+1
n

)
= 2n(detϕ)n+1. This completes the proof.

Proposition 3.10. Let ϕ be a form of dimension n with determinant d. Then

s(S2ϕ) = s(
∧2ϕ) = s(ϕ)n(d,−1)(n−1)(n−2)/2.

Proof. Write ϕ = 〈a1, . . . , an〉 in diagonal form. From Proposition 3.5,

S2ϕ =
(
⊥

1≤i1<i2≤n

〈ai1ai2〉
)
⊥ 〈2a2

1, . . . , 2a
2
n〉

=
∧2ϕ ⊥ n× 〈2〉.

Now the Hasse invariant of n×〈2〉 is
∏

i<j(2, 2) = (2, 2)
n(n−1)/2 and its determinant is 2n.

Also, by [11, Proposition 5.1], det(
∧2ϕ) = dn−1. By properties of the Hasse invariant,

s(S2ϕ) = s(
∧2ϕ)(2, 2)n(n−1)/2(2n, det(

∧2ϕ))

= s(
∧2ϕ)(2,−1)n(n−1)/2(2n, dn−1)

= s(
∧2ϕ)(2,−1)n(n−1)/2(2, d)n(n−1).

Now (2,−1) = (2, 1 − 2) = 1Br(K) and n(n − 1) is an even integer, so this becomes

s(S2ϕ) = s(
∧2ϕ) and the result follows from [11, Corollary 11.3].
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Algebraic properties of factorial symmetric powers. As for
∧k in [11], we examine

how Sk behaves with respect to scalar multiplication and orthogonal sum of forms.

Repeated application of the property of a permanent that multiplying a row or column
of the matrix by a scalar multiplies the permanent by that scalar gives us that Sk is
k-homogeneous with respect to scalar multiplication, that is,

Sk(αϕ) = αkSkϕ =

{
αSkϕ if k is odd;
Skϕ if k is even.

Proposition 3.11. Let ϕ and ψ be symmetric bilinear forms over K and let k be a
positive integer. Then

Sk(ϕ ⊥ ψ) = ⊥
i+j=k

Siϕ · Sjψ.

Proof. Let ϕ, ψ and k be as in the statement. Suppose that ϕ acts on a vector space V
of dimension n, and ψ acts on a vector space W of dimension m. Let {v1, . . . , vn} and
{w1, . . . , wm} be orthogonal bases for V and W with respect to ϕ and ψ respectively.

Let U = V ⊕W , so U is the underlying space for ϕ ⊥ ψ, with basis

{v1, . . . , vn, w1, . . . , wm}.

By Proposition 2.1, this result is true for the underlying vector spaces and we now show
it is also true of the forms.

Let ϕ(vi, vi) = ai for i = 1, . . . , n, and ψ(wj, wj) = an+j for j = 1, . . . ,m.

Let 〈ki1 !a
ki1

i1
· · · kir !a

kir

ir
kir+1

!a
kir+1

ir+1
· · · kir+s

!a
kir+s

ir+s
〉 be a one-dimensional summand in the

diagonalisation of Sk(ϕ ⊥ ψ), where 1 ≤ i1 < · · · < ir ≤ n < is+1 < · · · < ir+s ≤ n +m.

Let i = ki1 + · · · + kir and j = kir+1
+ · · · + kir+s

. Then 〈ki1 !a
ki1

i1
· · · kir !a

kir

ir
〉 is a one-

dimensional summand in the diagonalisation of Si(ϕ), while 〈kir+1
!a
kir+1

ir+1
· · · kir+s

!a
kir+s

ir+s
〉

is a one-dimensional summand in the diagonalisation of Sj(ψ). Thus

〈ki1 !a
ki1

i1
· · · kir !a

kir

ir
· · · kir+s

!a
kir+s

ir+s
〉 = 〈ki1 !a

ki1

i1
· · · kir !a

kir

ir
〉〈kir+1

!a
kir+1

ir+1
· · · kir+s

!a
kir+s

ir+s
〉

is a one-dimensional summand in the diagonalisation of S iϕ · Sjψ. Each such summand
of Sk(ϕ ⊥ ψ) is thus a summand of Siϕ · Sjψ for some i and j with i + j = k and by
dimension count, there is a one-one correspondence between one-dimensional summands
of Sk(ϕ ⊥ ψ) and one-dimensional summands of ⊥i+j=k Siϕ · Sjψ. This completes the
proof.

Remark 3.12. Wemay view the fact that Sk(ϕ ⊥ ψ) =⊥i+j=k Siϕ·Sjψ as giving another

pre-λ-ring structure on Ŵ (K), incompatible with the first. In particular, the dimension
map dim is not an augmentation with respect to this pre-λ-ring structure, as it does not
commute with the λ-operations: if ϕ has dimension n, then dimSk(ϕ) =

(
n+k−1

k

)
, but

in Z, λk(n) =
(
n
k

)
. Moreover, with respect to this pre-λ-ring structure, no element ϕ of

Ŵ (K) has finite degree.
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4. Non-factorial symmetric powers of symmetric bilinear forms

We now look at the class (B) definition of symmetric power. Recall that the kth complete

homogeneous polynomial in indeterminates X1, . . . , Xn is

Hk =
∑

1≤i1≤···≤ik≤n

Xi1 · · ·Xik =
∑

ki1
+···+kil

=k

X
ki1

i1
· · ·X

kil

il

consisting of all distinct monomials of degree k in the X1, . . . , Xn.

Definition 4.1. Given a diagonalisation 〈a1, . . . , an〉 of a symmetric bilinear form ϕ of
dimension n, we define the k-fold non-factorial symmetric power of ϕ,

Sk〈a1, . . . , an〉 := Hk(〈a1〉, . . . , 〈an〉)

= ⊥
1≤i1≤···≤ik≤n

〈ai1 · · · aik〉

= ⊥
ki1

+···+kil
=k

〈a
ki1

i1
· · · a

kil

il
〉

Remark 4.2. This definition is the same as the characterisation of Sk〈a1, . . . , an〉 given in
Proposition 3.5, except for factorials: hence “non-factorial”. Skϕ is defined over fields of
arbitrary characteristic, unlike Skϕ (ϕ is regular ⇐⇒ no ai is 0 ⇐⇒ Skϕ is regular).

Since the kth elementary symmetric polynomial is homogeneous of degree k, every term
in it occurs in the complete homogeneous polynomial Hk. Thus

∧kϕ is a subform of Skϕ.

By the Fundamental Theorem of symmetric functions, the complete homogeneous poly-
nomial Hk, being a symmetric function, has a unique expression as a polynomial in the
elementary symmetric polynomials. In our context, the elementary symmetric polynomial
Ei is the exterior power

∧i, which we know to be well-defined on the Witt-Grothendieck
ring from [11]. Thus Sk is well-defined on the Witt-Grothendieck ring.

Sk, unlike Sk, is consistent with the λ-ring structure on the Witt-Grothendieck ring, since
(see [6], [8]) the elementary symmetric polynomials Ei and the complete homogeneous
polynomials Hj satisfy precisely the relation

∑

i+j=k

(−1)jEiHj = 0.

Many of the remarks in [11, §4] about
∧kϕ hold for Skϕ also. As with Skϕ, if ϕ is a

hyperbolic form over a formally real field then Skϕ may or may not be hyperbolic, since
its subform

∧kϕ may or may not be hyperbolic. And, for the hyperbolic form 〈1,−1〉,
S3〈1,−1〉 = 〈1,−1,−1, 1〉 is also hyperbolic.

Again, non-isometric formsmay have isometric k-fold symmetric powers. Let ϕ = 〈1, 2, 3〉,
ψ = 〈1, 6, 3〉 be as in Remark 3.6 over a field K in which 3 is not a square. Then ϕ and
ψ are not isometric, but

∧2ϕ and
∧2ψ are isometric. So

S2ϕ =
∧2ϕ ⊥ 〈12, 22, 32〉 '

∧2ψ ⊥ 〈12, 62, 32〉 = S2ψ.

If ϕ is an isotropic form then Skϕ will also be isotropic, since its subform
∧kϕ is isotropic.
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If ϕ is an anisotropic form then Skϕ need not be anisotropic: since dimSkϕ > dim
∧kϕ,

we have that dimSkϕ > u(K), the u-invariant of K, whenever dim
∧kϕ > u(K).

Invariants of non-factorial symmetric powers.

Proposition 4.3. Let ϕ be a symmetric bilinear form of dimension n, and let k be a
positive integer. Then

det(Skϕ) = (detϕ)(
n+k−1

n ).

In particular, for k = 2, det(S2ϕ) = (detϕ)n+1.

Proof. Write ϕ = 〈a1, . . . , an〉, so detϕ = a1a2 · · · an. Then

Sk〈a1, . . . , an〉 = Hk(〈a1〉, . . . , 〈ak〉) = ⊥
1≤i1≤···≤ik≤n

〈ai1 · · · aik〉

in diagonal form and so its determinant is

det(Sk〈a1, . . . , an〉) =
∏

1≤i1≤···≤ik≤n

ai1 · · · aik .

By the proof of Proposition 3.9, this is just (detϕ)(
n+k−1

n ), and the result follows.

Proposition 4.4. Let ϕ be an n-dimensional symmetric bilinear form over K and let k
be a positive integer. Then

Skϕ =

dk/2e

⊥
i=0

((
n+ i− 1

i

)
× 〈1〉

)
·
∧k−2iϕ =

dk/2e

⊥
i=0

(
n+ i− 1

i

)
×
∧k−2iϕ.

Proof. Let ϕ = 〈a1, . . . , an〉 and let ψ = 〈a
2
1, . . . , a

2
n〉. Let 〈a

ki1

i1
· · · a

kil

il
〉 be an arbitrary

one-dimensional summand in the diagonalisation of Skϕ in Definition 4.1.

Write each kij = 2rij + εij where rij = dkij/2e and εij is 0 or 1 according as to whether
kij is even or odd, respectively. Then

a
ki1

i1
· · · a

kil

il
= a

2ri1

i1
· · · a

2ril

il
· a

εi1

i1
· · · a

εil

il

so

〈a
ki1

i1
· · · a

kil

il
〉 = 〈a

2ri1

i1
· · · a

2ril

il
〉 · 〈a

εi1

i1
· · · a

εil

il
〉.

Suppose that
∑

j rij = i. Then 〈a
2ri1

i1
· · · a

2ril

il
〉 = 〈(a2

i1
)ri1 · · · (a2

il
)ril 〉 is a one-dimensional

summand of Siψ and 〈a
εi1

i1
· · · a

εil

il
〉 is a one-dimensional summand of

∧k−2iϕ, each uniquely

determined by the integers ki1 , . . . , kil describing 〈a
ki1

i1
· · · a

kil

il
〉. Conversely, given two such

terms 〈(a2
i1
)ri1 · · · (a2

il
)ril 〉 from Siψ and 〈a

εi1

i1
· · · a

εil

il
〉 from

∧k−2iϕ, we can recover the kij .
Hence, as forms,

Skϕ = ⊥
ki1

+···+kil
=k

a
ki1

i1
· · · a

kil

il
=

dk/2e

⊥
i=0

Siψ ·
∧k−2iϕ.

Finally, since ψ = 〈a2
1, . . . , a

2
n〉 ' n × 〈1〉, the dimension formula for symmetric powers

gives Siψ '
(
n+i−1

i

)
× 〈1〉 and the result follows.
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Remark 4.5. Let K be a field with ordering P . Since the signature is a ring homomor-
phism, Proposition 4.4 allows us to calculate the signature of Skϕ in terms of signatures
of various

∧i(ϕ), which we can compute from [11, Proposition 10.1]. For example, we
have the next two results. We first need some notation. We define, for positive integers
k and n, a polynomial Dk

n(t) ∈ Z[t] as the k × k determinant

Dk
n(t) := det




t 1
n t 2 0

t
. . . . . . . . .

...
. . . n t k − 1
. . . t n t



.

(In the notation of [11, Definition 9.13], this would be Dk−1
n (t).)

Corollary 4.6. Let ϕ be an n-dimensional symmetric bilinear form over a field K, having
signature r with respect to the ordering P of K, and let k be a positive integer. Then

signP(S
kϕ) =

dk/2e∑

i=0

(
n+ i− 1

i

)
signP(

∧k−2iϕ) =

dk/2e∑

i=0

(
n+ i− 1

i

)
Dk−2i−1

n (r)

(k − 2i)!
.

Proof. The first equality follows from Proposition 4.4 and the fact that signP is a ring
homomorphism. The second equality follows from [11, Proposition 10.1].

Corollary 4.7. Let ϕ be a symmetric bilinear form of signature 0 over an ordered field
K and let k be an odd positive integer. Then the symmetric power Skϕ has signature 0.

Proof. Let signP(ϕ) = 0. If k is odd, so is each k − 2i for i = 0, . . . , dk/2e. Then by [11,

Corollary 10.5], each signP(
∧k−2iϕ) = 0. The result follows from Corollary 4.6.

Remark 4.8. As a dual to the determinant formula in [11, Remark 9.4], there is the
formula

k! ×Hk = det




P1 −1
P2 P1 −2 0
...

. . . . . . . . .

Pk−1 Pk−2
. . . P1 −k + 1

Pk Pk−1 . . . P2 P1




(see [8, 8, page 20]) where the Pj are the power sums in X1, . . . , Xn, that is, the Adams

operations Ψj in the λ-ring Ŵ (K). By [11, Proposition 9.20],

Ψj(ϕ) =

{
n× 〈1〉, for j even,
ϕ, for j odd,
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so

k! × Sk(ϕ) = det




ϕ −1
n ϕ −2 0

ϕ n
. . . . . .

...
...

. . . ϕ −k + 1
n ϕ



.

Definition 4.9. We define a polynomial Ck
n(t) ∈ Z[t] as the k × k determinant

Ck
n(t) := det




t −1
n t −2 0

t
. . . . . . . . .

...
. . . n t −k + 1
. . . t n t



= per




t 1
n t 2 0

t
. . . . . . . . .

...
. . . n t k − 1
. . . t n t



.

Clearly, Ck
n(t) is of degree k, and k! × Sk(ϕ) = Ck

n(ϕ).

Lemma 4.10. Let n, k be positive integers. Then the polynomial Ck
n(t) is monic and is

even (respectively odd) according as k is even (respectively odd).

Proof. We first establish the recurrence relation

Ck
n(t) = tCk−1

n (t) + (k − 1)(n+ k − 2)Ck−2
n (t) (∗)

by expanding the determinant in Definition 4.9 along the rightmost column.

We now proceed by complete induction on k. Fix n. Clearly C1
n(t) = t, C2

n(t) = t2 + n,
so the result is true for k = 1 and k = 2. Suppose the result is true for 1, 2, . . . , k − 1.
Comparing degrees in (∗) shows that

leading term of Ck
n(t) = t(leading term of Ck−1

n (t))

so Ck
n(t) is monic by the induction hypothesis. Moreover, C

k−1
n (t) has opposite parity to

Ck−2
n (t) by the induction hypothesis, so the parity of tCk−1

n (t) is equal to the parity of
Ck−2
n (t). Thus the parity of k − 2 is the parity of the right hand side of (∗), so it is the
parity of Ck

n(t), completing the proof.

Remark 4.11. This gives an alternative proof of Corollary 4.7. Let k be an odd positive
integer, and let ϕ be a symmetric bilinear form of signature 0 with respect to the ordering

P of K. By Lemma 4.10, Ck
n is odd, so C

k
n(0) = 0. Since signP : Ŵ (K) −→ Z is a

ring-homomorphism, signP S
kϕ = Ck

n(signP ϕ)/k! = Ck
n(0)/k! = 0.

Proposition 4.12. Suppose that k = 2l is an even positive integer, and ϕ is a symmetric
bilinear form with signP ϕ = 0 and dimension n = 2m. Then

signP(S
kϕ) =

(
m+ l − 1

l

)
.



SYMMETRIC POWERS OF SYMMETRIC BILINEAR FORMS 13

Proof. As above, signP(S
kϕ) = Ck

n(signP ϕ)/k! = Ck
n(0)/k!. Setting t = 0 in the recur-

rence relation (∗) in Lemma 4.10, we get

Ck
n(0) = (k − 1)(n+ k − 2)Ck−2

n (0)

= · · ·

= (k − 1)(n+ k − 2)(k − 3)(n+ k − 4) · · · 3(n+ 2)1(n)

=
l−1∏

j=0

(2j + 1)(n+ 2j),

Now write k! = (2l)! =
∏l−1

j=0(2j + 1)(2j + 2).

Then

sign(Skϕ) =
l−1∏

j=0

(2j + 1)(2m+ 2j)

(2j + 1)(2j + 2)

=
l−1∏

j=0

m+ j

j + 1

=

(
m+ l − 1

l

)

which completes the proof.

Corollary 4.13. Let ϕ be a hyperbolic form and let k be a positive integer. Then Skϕ is
hyperbolic if and only if k is odd.

Corollary 4.14. Let ϕ be a hyperbolic form of dimension n = 2m, so ϕ = m × 〈1,−1〉
and let k = 2l be an even positive integer. Then

Skϕ =

(
m+ l − 1

l

)
× 〈1〉 ⊥

1

2

((
n+ k − 1

k

)
−

(
m+ l − 1

l

))
× 〈1,−1〉.

Remark 4.15. Skϕ differs from Skϕ only in that its one-dimensional summands are mul-
tiplied by factorials 1!, 2!, . . . ∈ K. Each such factorial is a positive integer times the field
identity and so is positive with respect to any ordering of an ordered field. Multiplication

by such a factorial will not change the sign of any summand 〈a
ki1

i1
· · · a

kil

il
〉 of Skϕ and so

all of the above results about the signature of Skϕ apply to Skϕ as well.

Remark 4.16. Proposition 4.4 does not hold for factorial symmetric powers, as may be
seen from the simple example of ϕ = 〈a, b, c〉 and S3ϕ = 〈abc, 2a, 2b, 2c, 2a, 2b, 2c, 6a, 6b, 6c〉.
However, another form can be used instead of the

(
n+i−1

i

)
× 〈1〉 in Proposition 4.4.

Proposition 4.17. Let ϕ be an n-dimensional symmetric bilinear form over K and let
k be a positive integer. Then

Skϕ =

dk/2e

⊥
i=0

ϑi ·
∧k−2iϕ

where for each i from 0 to dk/2e, ϑi is the
(
n+i−1

i

)
-dimensional form given by

ϑi =⊥〈(2i1 + 1)!(2i2 + 1)! · · · (2ik−2i + 1)!(2ik−2i+1)! · · · (2in)!〉,
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the orthogonal sum being over all i1, . . . , in with i1 + · · ·+ in = i.

Proof. This proof proceeds in a similar way to the proof of Proposition 4.4, and is left as
a straightforward exercise. Of course, ϑ0 = 〈1〉.

Example 4.18. Some examples of the forms ϑi are as follows.

(a) From the proof of Proposition 3.10, S2ϕ =
∧2ϕ ⊥ n × 〈2〉. Here k = 2, and i = 1

corresponds to n× 〈2〉 = 〈2!, . . . , 2!〉 × 〈1〉, which is
(
⊥
j

〈(2 · 0)! · · · (2 · 1)︸ ︷︷ ︸
jth

· · ·!(2 · 0)!〉
)
× 〈1〉 =

(
⊥

i1+···+in=1

〈(2i1)! · · · (2in)!〉

)
×
∧0ϕ.

Thus

S2ϕ =
∧2ϕ ⊥

(
⊥

i1+···+in=1

〈(2i1)! · · · (2in)!〉

)
×
∧0ϕ

which is in the form of Proposition 4.17 above.
(b) For k = 4 and i = 1 we get

ϑ1 = ⊥
i1+···+in=1

〈(2i1 + 1)!(2i2 + 1)!(2i3)! · · · (2in)!〉 = 2× 〈6〉 ⊥ (n− 2)× 〈2〉.

The following result is [11, Theorem 11.2].

Theorem 4.19. Let (V, ϕ) be a quadratic space of dimension n and determinant d, and

let k be a positive integer. Then the Hasse invariant of
∧kϕ is

s(
∧kϕ) = s(ϕ)g(d,−1)e

where

g =

(
n− 2

k − 1

)
, e =

((n−1
k−1

)

2

)
.

Remark 4.20. The Hasse invariants of Skϕ and Skϕ are alike but not so much so that
we can treat them simultaneously. Our approach is: we know the Hasse invariant of an
exterior power, so we can write a symmetric power in terms of exterior powers and thence
(for small k) get formulae for the Hasse invariant of a symmetric power.

Proposition 4.21. Let ϕ be a form of dimension n with determinant d. Then

s(S2ϕ) = s(
∧2ϕ) = s(ϕ)n(d,−1)(n−1)(n−2)/2

and so s(S2ϕ) = s(S2ϕ).

Proof. From Proposition 4.4, S2ϕ =
∧2ϕ ⊥ n ×

∧0ϕ =
∧2ϕ ⊥ n × 〈1〉. From the

definition of the Hasse invariant, it is clear that adding copies of the identity form does
not alter the Hasse invariant, and so s(S2ϕ) = s(

∧2ϕ).

Proposition 4.22. Let ϕ be a form of dimension n with determinant d. Then

s(S3ϕ) = s(ϕ)e(d,−1)f

where e =

(
n− 2

2

)
+ n =

1

2
(n2 − 3n+ 6) and f =

((n−1
2

)

2

)
+ (n− 1)

(
n

2

)
.
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Proof. From Proposition 4.4, S3ϕ =
∧3ϕ ⊥ n ×

∧1ϕ =
∧3ϕ ⊥ n × ϕ. One computes

s(
∧3ϕ) using [11, Theorem 11.2],

s(
∧3ϕ) = s(ϕ)(

n−2
2 )(d,−1)

((n−1
2 )
2

)
.

It can easily be shown that s (n× ϕ) = s(ϕ)n(d,−1)(
n
2). Also, det(n × ϕ) = dn and, by

[11, Proposition 5.1], det(
∧3ϕ) = d(

n−1
2 ). The result follows from a computation, using a

standard formula for the Hasse invariant of a product of two forms ϕ1, ϕ2 of dimensions
n1 and n2 respectively, and with determinants d1 and d2 respectively:

s(ϕ1 ⊗ ϕ2) = s(ϕ1)
n1s(ϕ2)

n2(d1, d2)
n1n2−1(d1, d1)

(n2
2 )(d2, d2)

(n1
2 ).

(See, for example, [7, Proposition 9]).

Algebraic properties of non-factorial symmetric powers. Since Hk is a homoge-
neous polynomial, Sk is k-homogeneous with respect to scalar multiplication. The next
result is true in any λ-ring with operations sk arising from the Hk (see [6, page 47]).

Proposition 4.23. Let ϕ and ψ be symmetric bilinear forms over K and let k be a
positive integer. Then

Sk(ϕ ⊥ ψ) = ⊥
i+j=k

Siϕ · Sjψ.
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